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§1. Introduction:

Our purpose is to present a new key agreement protocol for public-key cryptography
suitable for implementation on low-cost platforms which constrain the use of computational
resources. In the process we introduce the concept of an Algebraic EraserTM , AE, and make
a case that AE is a suitable primitive for use within lightweight cryptography. Our underly-
ing motivation is the need to secure networks which deploy Radio Frequency Identification
(RFID) tags used for identification, authentication, tracing and point-of-sale applications.
The reader should consult [GJP] and [OSK] for further discussion.

The idea behind AE is to deny the cryptanalyst certain algebraic information inherent in
many contemporary algebraic key agreement protocols employing group-theoretic transfor-
mations such as discrete exponention certain finite abelian groups or conjugation on certain
infinite groups including braid groups (see [KM]). AE employs certain groups, homomor-
phisms, and actions of groups on monoids which to date force the cryptanalyst to primarily
employ exhaustive search to determine the key. After careful formulation of the basic struc-
ture of AE we specify a general key agreement protocol based on the AE and go on to give
some explicit examples including possible attacks and choice of secure parameters.

§2. The Algebraic EraserTM and its Associated Protocol:

The concept of the Algebraic Eraser emerges naturally when considering the following
structures in tandem. Let M,N denote monoids and let S denote a group which acts on M
on the left, and does not act on N . Given elements s ∈ S and m ∈ M , we denote the result
of s acting on m by sm. The semidirect product of M and S, M ! S is defined to be the
monoid whose underlying set is M × S and whose internal binary operation is given by

(m1, s1) ◦ (m2, s2) = (m1
s1m2, s1s2).
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The direct product of N and S is denoted by N × S.
The algebraic eraser E is the binary operation specified within the 6-tuple,

(M ! S, N,Π,E, A, B),

termed the E–structure, where M ! S and N are as above, Π is (an easily computable)
monoid homomorphism

Π : M → N,

E is the function
E : (N × S)× (M ! S) → N × S

given by
E

(
(n, s), (m1, s1)

)
=

(
n Π(sm1), ss1

)
,

and A,B are submonoids of M ! S such that for all (a, sa) ∈ A, (b, sb) ∈ B

(1) E
(
(Π(a), sa), (b, sb)

)
= E

(
(Π(b), sb), (a, sa)

)
.

The submonoids A and B, which satisfy (1) above, are termed E–Commuting. For simplicity
we will use the notation ! as follows:

E
(
(n, s), (m1, s1)

)
= (n, s) ! (m1, s1).

The operation ! satisfies the property that given (n, s) ∈ N×S and (m1, s1), (m2, s2) ∈ M!S
then

(2)
(
(n, s) ! (m1, s1)

)
! (m2, s2) = (n, s) !

(
(m1, s1) ◦ (m2, s2)

)
.

The identity (2) is easily verified and allows one to compute ! iteratively provided an element
(m, s) ∈ M ! S is expressed as a product of generators.

The term algebraic eraser is a fitting description of the function E in that given an
elements of N × S,

(n, s), E
(
(n, s), (m1, s1)

)
the element (m1, s1) cannot generally be recovered since the action of the element s on m1

is not visible once the function Π has been applied to sm1 i.e., the action of s on m1 has
been effectively erased.

With the algebraic eraser E and its associated E–structure specified we are in a position
to introduce an associated key agreement protocol, E–KAP. Referring to the protocol users
as Alice and Bob, each user is assigned a submonoid of N , NA and NB respectively so
that NA and NB commute. Furthermore Alice and Bob are assigned the E–commuting
submonoids A and B, respectively, which are determined by the fixed E–structure. With
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these assignments in place Alice and Bob choose their respective private keys which take
the form

APrivate = Alice’s Private Key =
(
na, 〈(a1, sa1), (a2, sa2), . . . , (ak, sak)〉

)
and

BPrivate = Bob’s Private Key =
(
nb, 〈(b1, sb1), (b1, sb2), . . . , (b!, sb!)〉

)
where na ∈ NA, nb ∈ NB ,

(a1, sa1), (a2, sa2), . . . , (ak, sak) ∈ A,

and
(b1, sb1), (b2, sb2), . . . , (b!, sb!) ∈ B.

Having made these choices, Alice and Bob can then announce their respective public keys:

APublic = Alice’s Public Key = (· · · ((na, id)!(a1, sa1))!(a2, sa2))!· · · )!(ak, sak) ∈ N×S,

BPublic = Bob’s Public Key = (· · · ((nb, id) ! (b1, sb1)) ! (b2, sb2)) ! · · · ) ! (b!, sb!) ∈ N × S,

where id denoted the identity element in S. With this done Alice and Bob are now each in
a position to compute the shared secret:

(3)
(· · · ((na, id) · BPublic!(a1, sa1)) ! (a2, sa2)) ! · · · ) ! (ak, sak) =

(· · · ((nb, id) · APublic ! (b1, sb1)) ! (b2, sb2)) ! · · · ) ! (b!, sb!),

where · denoted multiplication in N × S. The identity (3) holds because the submonoids
A,B where chosen to E–commute, and the submonoids NA, NB themselves commute.

§3. Algebraic Constructions

The E–structure (M ! S, N,Π,E, A, B) and its associate key agreement protocol lend
themselves naturally to various natural algebraic/categorical constructions. Furthermore
when we focus on the case of M being a group and S being a (sub)group of automorphisms
of the group, a generalized commutator emerges from the E–commuting condition.

The direct product of two E–structures, E1 and E2 yield a third E–structure:

(M1!S1, N1,Π1,E1, A1, B1)× (M2 ! S2, N2,Π2,E2, A2, B2) =(
(M1 ×M2) ! (S1 × S2), N1 ×N2,Π1 ×Π2,E1 ×E2, A1 ×A2, B1 ×B2

)
.



4 IRIS ANSHEL, MICHAEL ANSHEL, DORIAN GOLDFELD, STEPHANE LEMIEUX

Given a submonoid H ≤ M which is S invariant, there is a natural sub–E–structure of
(M ! S, N,Π,E, A, B) to consider:

(H ! S, N,Π ↓H ,E ↓(N×S)×(H!S), A ∩H,B ∩H).

Finally the concept of a image of an E–structure can be approached by starting with a
homomorphism Ψ : N → N0 and considering the E–structure

(M ! S, N0,Ψ ◦Π,E0, A, B),

where Ψ ◦Π, denotes the composite of Ψ and Π.
In the case M is actually a group and the homomorphism Π is surjective, then another

possible image can be defined. In this case we know that N ∼= M/K where K ! M . If
L ! M is a subgroup which is invariant under S then S acts on the group M/L and we can
form M/L ! S. This allows us to define an image of

(M ! S, M/K,
(
M → M/K

)
,E, A, B),

to be ((
M/L ! S

)
,M/LK,

(
M/L → M/LK

)
,EL,

(
AL/L

)
! S,

(
BL/L

)
! S

)
where unspecified homomorphisms are simply the natural homomorphisms.

When we again restrict ourselves to the case of a group, G and we assume the group S is
actually a group of automorphisms of G, S ≤ Aut(G) then the hypothesis of E–commuting
takes the following form. Elements in the subgroups A,B can be written as

(a, α), (b, β)

where a, b ∈ G and α, β ∈ Aut(G). The function Π can be assumed to take the form
G → G/K, and the identity (1) becomes(

a α(b)
)
K, α ◦ β) =

(
(b β(a)

)
K, β ◦ α).

The identity emerging from the first component leads naturally to the following general-
ization of the classical commutator. Given elements x, y ∈ G, and (a, α), (b, β) ∈ Aut(G)
define

C(α, β, x, y) = x yβ(x−1)α(y−1).

Clearly when α, β = id we are reduced to the classical definition. Some analogues of the
various classical commutator identities generalize as follows (and are left to the reader to
verify). Let

Ω(α, β, x, y) = α(x) y β(x)−1,

then we have
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Proposition 1. With the notation as above, the following identities hold:

• C(α, β, x, y)−1 = C(β−1, α−1, α(y), β(x))

• C(α, β, xy, z) = Ω
(
id, β, x, C(α, β, y, z)

)
C(id, id, β(x), α(z))

• C(α, β, x, yz) = C(id, id, x, y) Ω
(
id, α, y, C(α, β, x, z)

)
• (identity of Hall–Witt type, see [MKS])

y−1C
(
id, α,C(α, α, y, α(x−1)), α(z−1)

)
y

· z−1C
(
id, α, C(α, α, z, α(y−1)), α2(x−1)

)
z

· α(x−1)C
(
id, α, C(α, α2, α(x), z−1), α(y−1)

)
α(x)

Before delving into the examples of our protocol we present a brief aside regarding a
group theoretic authentication method. Recall the protocol introduced in [AAG1]: users
Alice and Bob each choose private elements a, b in assigned subgroups A, B of a group G
and in the end agree on the commutator [a, b] known only to the users. In the course of the
protocol Alice actually obtains the conjugate b−1ab and hence is in a position to compute
the element

b−1ab · a · [a, b] = b−1a2b = (b−1ab)2.

Assuming that extraction of roots, in particular square roots, is known to be a difficult
problem, Alice can forward the element b−1a2b to Bob who can then conjugate by the inverse
of his private key b−1 to obtain the element a2. Thus Alice has effectively transmitted the
square of her private key a2 to Bob over an open channel. With this done, any choice
of a hash function H (i.e., a one–way collision–free function) generates an authentication
protocol in the spirit of [D]:

(i) Alice chooses an element r ∈ G and sends Bob the the element c = H(ra2r−1),

(ii) Bob chooses a random bit d and sends d to Alice,

(iii) If d = 0 Alice sends the element r and Bob verifies that c = H(ra2r−1),

(iv) If d = 1 Alice sends the conjugate s = ra2r−1 and Bob verifies that c = H(s2).

§4. Examples of Key Agreement based on the Algebraic EraserTM :

Fix an integer n ≥ 7 and a prime p > n. As an example of an algebraic eraser E whose
associated key agreement protocol merits attention we begin by considering a subgroup

M ≤ GL(n, Fp(t)),

where t = (t1, . . . , tn). Also, let S = Sn be the symmetric group on n symbols. The
group S acts on GL(n, Fp(t)) by permuting the variables {t1, . . . , tn}, and we shall assume
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that the action of S maps M to itself. Furthermore we assume that the semidirect product
M ! S is finitely generated by some set of elements,

(4)
{
(x1(t), s1), . . . , (xλ(t), sλ)

}
.

In this example, the monoid N is chosen to be

N = GL(n, Fp).

In order to define the homomorphism Π, we fix n elements in Fp,

τ1, τ2, . . . , τn ∈ Fp,

and then evaluate
Π : M → N

by setting
t1 = τ1, t2 = τ2, . . . , tn = τn.

A crucial assumption needs to be made at this point.

Assumption τ : Let τ = (τ1, τ2, . . . , τn). We assume that xi(τ), xi(τ)−1 are well defined
for all i = 1, 2, . . . , n.

There are, of course, many possible choices for the commuting submonoids NA, NB ,
which need to be chosen. One elementary choice for NA and NB is to first fix a matrix
m0 ∈ GL(n, Fp) of order pn− 1. Then let NA = NB be the submonoid of all matrices of the
form

(5) %1m
k1
0 + %2m

k2
0 + · · · + %rm

kr
0 ,

where %1, %2, . . . , %r ∈ Fp and r, k1, k2, . . . , kr ∈ Z+. Each users private na and nb are then
elements of the above form (5). As to the subgroups A,B ≤ M !S, which must E–commute
for the protocol to succeed, one possibility is to proceed as follows. Fix an element z ∈ M !S
and choose two subsets of generators of M ! S,{(

xa1(t), sa1

)
, . . . ,

(
xaµ(t), saµ

)}
,

{(
xb1(t), sb1

)
, . . . ,

(
xbν (t), sbν

)}
,

so that

(6) xai(t) · xbj (t) = xbj (t) · xai(t), i = 1, . . . , µ, j = 1, . . . , ν,

(7) saitbj = tbj sai , i = 1, . . . , µ, j = 1, . . . , ν,
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and

(8) sai xbj (t) = xbj (t),
sbj xai(t) = xai(t), i = 1, . . . , µ, j = 1, . . . , ν.

Alice and Bob are then assigned the subgroups

(9)
z ·

〈(
xa1(t), sa1

)
, . . . ,

(
xaµ(t), saµ

)〉 · z−1,

z ·
〈(

xb1(t), sb1

)
, . . . ,

(
xbν (t), sbν

)〉 · z−1,

respectively, which will automatically E–commute with each other.

Hidden Elements Assumption: We assume that the element z ∈ M !S and the elements
xa1(t), . . . , xaµ(t), xb1(t), . . . , xbν (t) ∈ M are secretly chosen and that it is difficult to
determine these elements given that the conjugates (9) are publically announced.

We are now in a position to summarize the above example of the Algebraic EraserTM

key agreement protocol.

General Public Information: A subgroup M of the matrix group

N = GL
(
n, Fp(t1, . . . , tn)

)
.

The symmetric group S = Sn acting on the n variables t1, . . . , tn by permuting them. The
subgroup M is chosen to be invariant under the action of S allowing for the formation of
the semidirect product M ! S.

Covert Information: A finite set of generators,{(
xa1(t), sa1

)
, . . . ,

(
xaµ(t), saµ

)}⋃ {(
xb1(t), sb1

)
, . . . ,

(
xbν (t), sbν

)}
"

{
(x1(t), s1), . . . , (xλ(t), sλ)

}
,

of M !S satisfying (6), (7), (8), and the hidden elements assumption. An element z ∈ M !S
satisfying the hidden elements assumption.

Public Information: An integer n ≥ 7. A prime number p > n. The E–commuting
subgroups

A = z ·
〈(

xa1(t), sa1

)
, . . . ,

(
xaµ(t), saµ

)〉 · z−1,

B = z ·
〈(

xb1(t), sb1

)
, . . . ,

(
xbν (t), sbν

)〉 · z−1,

where z is the hidden conjugating element and the xi(t) are the hidden subgroup generators.
The homomorphism Π : M → N satisfying Assumption τ . The operation ! satisfying (2).
A fixed matrix m0 ∈ N .
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Alice’s Private Key: A matrix of the form na = %1m
α1
0 + %2m

α2
0 + · · · + %rm

αr
0 , where

%1, . . . , %r ∈ Fp and r, α1, . . . , αr ∈ Z+ are secret.
A subset of generators

{(
xai1

(t), sai1

)
, . . . ,

(
xaiµ

(t), saiµ

)}
of A.

Alice’s Public Key:

APublic =
(( · · · ((na, id

)
! z

)
!

(
xai1

(t), sai1

)
! · · · ) !

(
xaiµ

(t), saiµ

))
! z−1

Bob’s Private Key: A matrix of the form nb = %′1m
β1
0 + %′2m

β2
0 + · · · + %′r′m

βr′
0 , where

%′1, . . . , %′r′ ∈ Fp and r′, β1, . . . , βr′ ∈ Z+ are secret.
A subset of generators

{(
xbj1

(t), sbj1

)
, . . . ,

(
xbjν

(t), sbjν

)}
of B.

Bob’s Public Key:

BPublic =
(( · · · ((nb, id

)
! z

)
!

(
xbj1

(t), sbj1

)
! · · · ) !

(
xbjν

(t), sbjν

))
! z−1

Shared Secret:

( · · · ((na, id) · BPublic ! z
)

!
(
xai1

(t), sai1

))
! · · · ) !

(
xaiµ

(t), saiµ

))
! z−1

=
( · · · ((nb, id) · APublic ! z

)
!

(
xbj1

(t), sbj1

))
! · · · ) !

(
xbjν

(t), sbjν

))
! z−1.

In order to analyze the cryptographic applicability of the above algorithm, we shall make
the following simplifying assumptions and definition.

• iµ = jν = g = the number of generators in Alice and Bob’s private keys.

• λ ≤ n2 where λ is equal to the number of generators of M ! S.

It is now possible to compute the size (in bits) of the public and private keys that occur
in the Algebraic EraserTM Key Agreement Protocol. First of all, Alice and Bob’s public
keys will simply be a pair consisting of an n × n matrix with coefficients in the finite field
Fp and an element of the permutation group Sn. Each entry in this matrix will have at
most log2(p) bits. It follows that the matrix component of the public key will have bit size
equal to n2 log2(p). The permuation can be specified by a list of n numbers where each
number is between 1 and n. Thus the bit size of the permutation is at most n log2(n) ≤
n log2(p). Consequently, the size of the public key is at most (n2 + n) log2(p). The private
key also has two saperate components. First, the high power of the fixed matrix m0 can
be represented with at most n2 log2(p) bits. Secondly, each generator can be specified with
at most log2(λ) ≤ 2 log2(n) bits. It follows that the size of the private key is at most
n2 log2(p) + 2 log2(n)g. We record these observations in the following proposition.
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Proposition 2. In the Algebraic EraserTM protocol specified above, the bit-size of the
private key is at most

(10) n2 log2(p) + 2 log2(n)g,

while the bit-size of the public key is at most

(11) (n2 + n) log2(p).

Next, we examine the running time of the algorithm and show that it is essentially
linear in the number of generators g in the private key. We shall obtain a crude esti-
mate of the running time in terms of elementary processor operation. By an elemen-
tary processor operation we mean either a search and replace operation or a multiplica-
tion/addition/subtraction/involving two bits. It is convenient to make the simplifying as-
sumption that each matrix xk(t) (k = 1, 2, . . . , λ) occurring in the generator (xk(t), sk)
differs from the identity matrix in at most % entries and that each of these entries is a Lau-
rent polynomial in Fp(t) where the Laurent polynomial itself has at most ρ terms of degree
at most d. For example, the matrix 1 0 0 0

0 t1 − 2t−1
2 − t2 + t32 0 0

0 0 1 0
3 + 2t1 0 0 2


differs from the identity matrix in exactly 3 entries and each of these entries involves Laurent
polynomials of at most 4 terms of degree at most 3. The degree is defined to be the absolute
value of the largest power, i.e., t−4

2 has degree 4. Given an element

(x(t), s) ∈ M ! S

and a generator
(xj(t), sj)

of M ! S, the most expensive and time consuming operation of the protocol is the compu-
tation of

(x(t), s) ! (xj(t), sj) =
(
x(t) · Π (sxj(t)) , ssj

)
.

First of all, the multiplication of permutations ssj can be done in n search and replace
operations, so this is clearly linear in the number of generators g. Second, the computation
of sxj(t) requires at most %ρ search and replace operations. The computation of Π (sxj(t))
requires an additional %ρ search and replace operations followed by at most %ρd computations
in Fp. Finally, the computation of x(t) · Π (sxj(t)) involves at most n% multiplications and
additions in Fp. This gives an upper bound of n+2%ρ+2%ρd(log2 p)2+2n%(log2 p)2 elementary
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operations for each of the g generators. In the final step of the key agreement protocol, it
is necessary to multiply two n × n matrices over Fp. This will take n3(log2 p)2 operations.
Assuming that the conjugating element z is made up of gz generators, the total estimate for
the running time of the algorithm is:

(12) n3(log2 p)2 + (g + 2gz) ·
(
n + 2%ρ + 2%ρd(log2 p)2 + 2n%(log2 p)2

)
.

One may also give estimates for the memory size (fixed and rewriteable) needed to run the
protocol.

§5. The Colored Burau Key Agreement Protocol (CBKAP):

Fix an integer n ≥ 7, and let t = (t1, . . . , tn). Define

x1(t) =


−t1 1

1
. . .

1

 ,

and for i = 2, . . . n− 1, let

xi(t) :=


1

. . .
ti − ti 1

. . .
1

 .

which is the identity matrix except for the ith row where it has successive entries ti,−ti, 1
with −ti on the diagonal. For each i = 1, 2, . . . , n− 1, we define

si = (i i + 1)

which is just the transposition (element of the symmetric group Sn) which interchanges i
and i + 1. The elements

(
xi(t), si

)
, for i = 1, 2, . . . , n − 1, satisfy the braid relations and

hence determine a representation of the braid group (see [AAG2]). Next, fix a prime p > n,
then the set of pairs {(

x1(t), s1

)
, . . . ,

(
xn−1(t), sn−1

)}
will generate the semidirect product M ! S with S = Sn and M ⊂ GL(n, Fp). We call the
group M ! S the colored Burau group. The general key agreement protocol given in §4,
with this choice of M , is termed the colored Burau key agreement protocol (CBKAP). If we
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choose τ = (τ1, τ2, . . . , τn) with 1 ≤ τi < p for 1 ≤ i ≤ n then one may easily check that
Assumption τ of §4 is satisfied.

In order to implement the CBKAP with the above choice of M it is necessary to effectively
choose the matrix m0, the elements z ∈ M ! S, and

xa1(t), . . . , xaµ(t), xb1(t), . . . , xbν (t) ∈ M.

With regard to the matrix m0 one can begin by generating a random matrix from
GL(N, Fp) and test to see if this matrix has an irreducible characteristic polynomial over Fp.
If it does not we simply choose another random matrix and repeat the process. Appendix
A contains a Mathematica program that performs this task which heuristically runs quickly
and is always successful. The resulting matrix m0 then has an easily calculable multiplica-
tive order because m0 is diagonalizable over Fp. The non-zero entries of the diagonal matrix
will lie in Fpn and be the roots of the characteristic polynomial. With pobability better than
1/2, each of these roots will have order pn−1, and so the matrix m0 will likewise have order
pn − 1. If the roots have a lower order, we again discard and choose a new m0. Eventually
a suitible m0 will be found.

We now turn to the task of choosing the elements z ∈ M ! S and

xa1(t), . . . , xaµ(t), xb1(t), . . . , xbν (t) ∈ M.

Assuming that we do not want either party to be able to obtain the other’s key, a trusted
third party (TTP) will be performing the algorithm. If one wishes to design a system which
allows for a ”master key” then the TTP would simply be one of the users who would then
be in possession of the ”master key.”

The TTP performs the following actions to establish two commuting sets of generators
in the braid group. By the representation described above, this produces two E–commuting
sets of generators in the colored Burau group. Note that these two sets can then be made
public and used by any two parties that wish to establish, secretly, a common key. Thus the
TTP need only be called upon once.

Let Bn = {b1, . . . , bn−1} be the Artin representation of the braid group on n strings.
Recall that the left canonical form of a braid word may be written as a power of the funda-
mental braid times a sequence of short braid words, called permutation braids. For further
details see [B]. To further shorten the lengths of keys, any even power of the fundamental
braid can be ommitted since it is a central element. For the same reason, any odd power
of the fundamental braid can simply be replaced by the fundamental braid itself. This will
considerably shorten the sequences of integers representing keys.

TTP Algorithm:

(1) Choose two secret subsets BL = {b!1 , . . . b!α}, BR = {br1 , . . . brβ} of the set of
generators of Bn, where |%i − rj | ≥ 2 for all 1 ≤ i ≤ %α and 1 ≤ j ≤ rβ .

(2) Choose a secret element z ∈ Bn.
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(3) Choose words {w1, . . . , wγ} of bounded length from BL.

(4) Choose words {v1, . . . , vγ} of bounded length from BR.

(5) For 1 ≤ i ≤ γ:

(a) calculate the left normal form of zwiz−1 and reduce the result modulo
the square of the fundamental braid;

(b) set w′
i equal to the sequence of integers that corresponds to the element

calculated in (a);
(c) calculate the left normal form of zviz−1 and reduce the result modulo

the square of the fundamental braid;
(d) set v′i equal to the sequence of integers that corresponds to the element

calculated in (c).

(5) Publish the two sets {w′
1, . . . , w′

γ} and {v′1, . . . , v′γ}.

§6. Linear Algebraic Attack on CBKAP:

There is a successful linear algebraic attack on CBKAP if the conjugating element z is
known. We assume, for simplicity, that n is even. There is a similar attack if n is odd.
Suppose that the matrix m0, the element z, and the user public keys are given by

(mα
0 · Π(z) · Π(szA) · Π(szsAz−1), sz sAsz−1),

and
(mβ

0 · Π(z) · Π(szB) · Π(szsBz−1), sz sBsz−1).

Apriori, the matrix Π(szA) takes the form
(

X 0
0 I

)
, where X is an element of GL(n/2, Fp)

and I is the identity matrix in GL(n/2, Fp). Similarly Π(szB) takes the form
(

I 0
0 Y

)
.

Note that, in general, the condition that A,B E-commute require that Π(szA) and Π(szB)
should be commuting matrices which differ from the identity in disjoint blocks. We can
always bring them to the form specified above by conjugating by a suitable permutation
matrix.

The attack that emerges does not derive the users’ secret keys, but only the agreed upon
key. The attacker, Eve, begins by diagonalizing the matrix m0,

Qm0Q
−1 =

 λ1
. . .

λn

 .

Despite the fact that Eve does not know α, she can assert that

mα
0 = Q−1

 λα
1

. . .
λα

n

 Q,
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and hence Alice’s public key actually takes the form

(13) Q−1

 λα
1

. . .
λα

n

 Q · Π(z)
(

X 0
0 I

)
Π(szsAz−1).

Since the element z is known Eve can compute Π(z), sz, szsA, and then Π(szsAz−1). Mul-
tiplying (13) appropriately on the left and right Eve obtains λα

1
. . .

λα
n

 Q · Π(z)
(

X 0
0 I

)
.

Eve may set Q · Π(z) = ((cij)), where cij are known for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. What
remains is simply  λα

1
. . .

λα
n

 · ((cij)) ·
(

X 0
0 I

)
.

The powers λα
j (with j > n

2 ) of the eigenvalues are thus visible. Similarly, one may switch the
first half of the columns of Q with the second half of the columns (by conjugating everything
by an appropriate permutation matrix)which then allows Eve to obtain mα

0 .
At this point Eve can recover Π(szA) and the matrix Π(szsBsAz−1). The shared key can

be obtained from Bob’s public key by multiplying on the left and right by known elements:
mα

0 on the left, and (Π(szsBz−1)−1, Π(szA), and Π(szsBsAz−1) on the right (recall that we
assumed Π(szsBA) = Π(szA)).

The attack just described was implemented in C++. Assuming the conjugating element
z in CBKAP is known, the shared secret can be found from the public keys in 0.04 seconds,
regardless of the length of the second private keys chosen by Alice and Bob. Part of the
C++ code is included in Appendix B. Special thanks to Alan Silvester for producing this
code.

§7. Security Analysis of CBKAP:

The linear algebraic attack discussed in §6 cannot be implemented unless the conjugating
element z is correctly guessed. This implies that performing an exhaustive search for z can
yield Alice’s and Bob’s shared secret. Let gz denote the number of Artin generators of z.
To ensure m bits of security against this attack we need

(14) gz · ln(2n− 2)
ln(2)

≥ m.
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Since the advent of braid group cryptography in [AAG1], various algorithms have emerged
for determining an element z in the Artin braid group Bn provided the set of elements

a1, . . . , a!, z−1a1z, . . . , z−1a!z ∈ Bn

is publicly known. This is called the simultaneous conjugacy search problem. We shall
examine several such algorithms and show that they cannot successfully generate an attack
on the CBKAP.

In [G], a probabilistic approach to the conjugacy search problem in Garside groups is
obtained. His algorithm yields a linear solution to the conjugacy search problem in braid
groups which almost always works (except on a set of measure zero).

Recall that in the TTP algorithm, the elements

w′
i = zwiz

−1, v′i = zvjz
−1, (1 ≤ i ≤ %α, 1 ≤ j ≤ %β)

are publicly announced, but z, wi, vj , (1 ≤ i ≤ %α, 1 ≤ j ≤ %β) are kept secret. All that we
really know is that all the wi commute with all the vj , for 1 ≤ i ≤ %α, 1 ≤ j ≤ %β . The
difficulty in using this attack on CBKAP to recover z, is that although each wi and vi is
conjugate to w′

i and v′i respectively, modulo the square of the fundamental braid, wi and vi

are secrets known only to the TTP. Thus an attacker would have to guess each wi and vi

correctly and then determine the braid element that conjugates the wi’s and vi’s to the w′
i’s

and v′i’s. The length of each wi and vi could easily be set long enough to prevent such an
attack but even this is unnecessary for several reasons.

First there will be many elements conjugate to w′
1, even of the same length as w1 if this

length was correctly guessed by the attacker. For example all cyclic conjugates of w1 will
generally have the same length as w1. Second the length of w1 is only known to be less than
a given bound which increases the number of elements conjugate to w′

1 which are not w1, i.e
the number of false positives. Third, w′

i was reduced modulo the square of the fundamental
braid, further increasing the number of false positives. Finally, each false positive will yield
a corresponding false positive for each of the other w′

i’s and v′i’s.
The reason for the false positives is that the TTP conjugates each by z and then removes

the highest power of ∆2 that he can. In general, after conjugating, you will get much higher
powers of ∆2 in the normal form. Even more importantly, the permutation braids resuting
will be all different. For example, if the attacker: chooses words of length 10, then removes
powers of ∆2, and then tries to solve the conjugacy search problem, it will fail to give a
usable z.

Length based attacks for the conjugacy search problem were introduced in [HT]. The
algorithm has been further studied and developed in [GKTTV], and [D].

The length attacks work as follows. Let x, y ∈ Bn such that x and y are known to be
conjugate in Bn and y is much longer than x. For each c ∈ Bn of length 10, if the length of
c−1yc is significantly less than that of y then to some probability we know that c is the first
10 generators of an element that conjugates x to y. The attacker then repeats the algorithm
with c−1yc in place of x.
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This attack is ineffective against CBKAP again because the wi’s and vi’s are not known.
Further, since w′

i is actually equal to zwiz−1 ×∆2r, where r is some integer and ∆ is the
fundamental braid, the actual length of the conjugate element is unknown to all but the
TTP. Also, the short length of z as will be determined in the next section, implies that
checking all c of length 10, amounts essentially to brute force search for z with only a
probabilistic verification of success. Finally if the algorithm is attempted using shorter c’s
then heuristics indicate that even choosing the correct c produces c−1yc of length equal to
or even greater than that of y.

§8. Parameter Choices and Running Times:

The intended application of CBKAP is for constrained devices where only lightweight
security is possible. With this, in mind, we will choose parameters to ensure 60, 80, and
120 bits of security, i.e., that, respectively, 260, 280, or 2120 attempts are needed by any
of the above attacks in order to compromise CBKAP. It should be noted however, that
CBKAP could be scaled to achieve higher levels of security. We will show the derivation of
parameters only for 80 bits of security, the other cases being analogous. The results for all
three security levels with a small selection of parameter choices are reported in the tables
below. Although it is not the focus of this paper, we note that CBKAP will run at least 10
times faster (but probably significantly more) when implemented in a symmetric platform.

The most immediate and straightforward attack on CBKAP is to perform an exhaustive
search of all possible choices of Alice and Bob’s private keys. This attack, as one might
expect, is easy to overcome by choosing large enough parameters. Recall that Alice’s public
key is the eraser product of a linear combination, over Fp, of r powers of the publicly known
matrix, m0 and the elements of her second private key which we assume has length g. We
know m0 has order pn − 1 so on average 1

2 (pn − 1)r powers will need to be checked before
finding the correct one. Likewise the keyspace for Alice’s second private key is all words of
length g in generators and their inverses that the TTP gives her. Say there are T of these.
Then the total number of searches for her public key will be 1

2 (pn − 1)r for the first private
key and T g for the second private key. Thus for m bits of security, we need r·n·ln(p)

ln(2) ≥ m,
and

(15) g · ln(T )
ln(2)

≥ m.

Note that the inequality (15) is critical for without it in place the system is not secure.We
will show in the next section that we can choose relatively small parameters to meet our
desired standards of security.

The case of n = 14 serves as a good illustrative example. Thus CBKAP will run, in this
instance, with elements from B14 and over matrices of dimension 14. Recall that gz denotes
the length of the element z in the Artin generators. To provide 80 bits of security against
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an exhaustive search for z, the inequality, as in (14), asserts that we must have

gz
ln(2n− 2)

ln(2)
≥ m

implies that gz ≥ 80 ln(2)
ln(26) ≈ 17, and, hence, z must be chosen to be of length 17. If we choose

the length of the wi’s and vi’s to be bounded by 10, then the conjugate elements, reduced
modulo ∆2 appear to have length around 188 generators. We label the average length of the
wi’s and vj ’s by L. Once the length g of Alice’s and Bob’s second private keys are set, and
the prime p is chosen, the number of bit operations required for either of them to generate
the shared secret using their private keys and the other’s public key is approximately(

7 · 14 · L · g + 142
)
log2(p).

If the TTP produces 27 generators each for Alice and Bob then including their inverses
we have 54 generators in all. Against exhaustive search for either Alice’s or Bob’s second
private keys, we need to ensure, as in (15), that

g · ln(54)
ln(2)

≥ 80.

The smallest value possible, satisfying this inequality, is g = 14. Likewise, to ensure 80
bits of security against a brute force attack on the first private key, we can choose p = 13,
and r = 3. The chart below summarizes these results and lists the approximate number
bit operations needed to produce a shared secret, for the different security levels and the
different average lengths of the wi’s and vj ’s.

Security Analysis for CBKAP over B14

Bits of Security Lengths of wi, vj
Length of 2nd

Private Key
Bit Ops to make

shared secret
60 188 11 816144

80 188 14 1037232
120 572 21 4714192

To decrease the number of bit ops, the system can be scaled down further. We next
consider n = 12. Thus CBKAP will run, in this instance, with elements from B12 and over
matrices of dimension 14. To provide 80 bits of security against an exhaustive search for z,
the inequality

gz
ln(2n− 2)

ln(2)
≥ m
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implies that gz ≥ 80 ln(2)
ln(22) ≈ 18 so z will need to be of length 18. If we choose the length

of the wi’s and vj ’s to be bounded by 10, then the conjugate elements, reduced modulo ∆2

appear to have length around 130 generators. We label the average length of the wi’s and
vi’s by L. Once the length g of Alice’s and Bob’s second private keys are set, and the prime
p is chosen, the number of bit operations required for either of them to generate the shared
secret using their private keys and the other’s public key is approximately(

7 · 12 · L · g + 122
)
log2 p.

If the TTP produces 27 generators each for Alice and Bob then including their inverses we
have 54 generators. Against exhaustive search for either Alice’s or Bob’s second private
keys, we need to ensure that

g · ln(54)
ln(2)

≥ 80.

The smallest value possible, satisfying this inequality, is g = 14. Likewise, to ensure 80
bits of security against a brute force attack on the first private key, we can choose p = 13,
and r = 3. The chart below summarizes these results and lists the approximate number
bit operations needed to produce a shared secret, for the different security levels and the
different average lengths of the wi’s and vj ’s.

Security Analysis for CBKAP over B12

Bits of Security Lengths of wi, vj
Length of 2nd

Private Key
Bit Ops to make

shared secret
60 130 11 484512

80 188 14 615552
120 572 21 9121312

§9. Hardware Implementations:

The CBKAP may be employed in the RFID space. An initial application would be
authentication for a local area network consisting of passive RFID tags and readers. Passive
RFID tags are tags with no battery power that draw energy from a reader. We are interested
in providing authentication between tag and reader. The CBKAP algorithm allows the
RFID tag and a reader to establish a common secret key which can then be used for mutual
authentication by standard cryptographic techniques which we do not focus on. We also
note that the readers in the local area network typically have heavy weight computational
resources and do not require lightweight cryptographic algorithms. Also, the TTP algorithm
can be performed offline or by the readers.
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We now discuss the part of the CBKAP algorithm which needs to be performed by the
passive RFID tag. Consider CBKAP over B12 with a security level of 260 and parameters
as specified in section 8. For references regarding VLSI signal processing (see [DR]) and for
references regarding EPCTM Radio-Frequency Identity Protocols Class (see [EPC]).

The practical deployment of the Algebraic Eraser (AE) within an extremely constrained
device such as a passive RFID tag is primarily governed by the twin concerns of tag economics
and tag performance. At the time of writing these economic constraints limit the total cost
of implementation of the AE to less than 0.5 cents. Similarly the performance constraints
impose a run time limit of under 20ms if the AE is not to interfere with normal tag access
rates provided for by the Electronic Product Code (EPC) protocol or conflict with FCC
dwell time regulations. Current CMOS semiconductor industry norms of $1000 per wafer
thus limit the available die size for the AE to 163,000 um2.

One approach is to build a custom Algebraic Eraser processing engine (AEPE) directly
in hardware such that the datapaths and dedicated finite field processing elements (Mul-
tiplies/Adds) are arranged to compute just enough information on every clock cycle. The
AEPE consists of the following four components: A non-volatile memory (NVM) to con-
tain the tag private keys, A permutation engine (SE), A matrix multiplication engine (ME)
and control functions (C) to schedule the AE operations. We seek an implementation that
balances both sets of constraints

We are now in a position to analyze the following example where p = 13 and the AEPE is
required to perform 2,200 rounds of a permutation followed by a 12×12 matrix multiplication
running at a typical clock rate of 1 MHz.

The matrix multiplier takes advantage of the sparse form of the right hand matrix to
reduce the number of computations per row to two finite field multiplications and additions.
Furthermore, the choice of p = 13 limits all of the operands to 4 bits or less in width. Thus
a complete matrix multiplication only requires a total of 24 multiplications and additions.
By allowing 5 clock cycles for the matrix multiplication (to give a total run time of 11 ms)
we can construct a systolic array multiplier architecture using bit-serial signal processing to
reduce all of the datapaths from 4 bits down to 1 bit wide and use the same gates to perform
both the multiplication and the addition (the control scheduler allocates 4 clock cycles to
the multiplication and 1 to the addition).

The permutation engine SE can be implemented using a Benes switch which, for a bit-
serial non-blocking 12 → 12 permutation requires less than 56 1-bit wide crossovers or 112
gates.

Having established that we can use 1 bit wide datapaths we complete our gate count and
area analysis to determine that we need 5,374 logic gates and 1200 bit of NVM. Based on
industry norms for 0.13um CMOS of 242,000 gates/mm2 these functions can be built in
circa 22,000 um2 for the logic and 120,000 um2 for the NVM.
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The gate counts associated with this bit serial architecture are:

Multiplication/Addition = (24× 4× 18) = 1728 gates
Addition = 0 gates (now part of the multiplier).
Inline storage for temporary results = 144× (4× 4 + 1) = 2448 gates

AEPE Scheduler < 1200 gates.

Finally we mention that the creation of security standards for the RFID market is at an
early stage of development [PKK]
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Appendix A

Generate a matrix of high order in Maple
By: Stephane Lemieux
Date: August 2005

> interface(rtablesize):=13;

interface (rtablesize) := 13
This Maple program generates a 12 by 12 matrix with irreducible character-
sistic polynomial over Fp. Such matrices usually have order p12 − 1.

> matgen:=proc(p::posint)

> local tag, m, i, j, r, f;

> tag := 0;

> while tag = 0 do

> m:=Matrix(12,12):

> r:=rand(p):

> for i from 1 to 12 do

> for j from 1 to 12 do

> m[i,j]:=r();

> od;

> od;

> f := x -> Det(m - x*Matrix(12,12,shape=identity))

> mod p;

> if Irreduc(f) mod p then return m; fi;

> od:

> end proc:

> matgen(13);



2 5 6 8 6 11 4 7 6 11 0 11
8 11 2 7 6 7 8 0 4 5 4 4
3 7 0 12 5 5 10 2 9 5 5 1
2 5 12 5 0 3 6 0 9 3 9 10
2 3 11 7 9 8 6 3 1 12 3 5
6 9 0 10 5 6 11 3 0 9 7 5
0 9 11 12 8 12 7 1 3 2 4 3

12 8 0 3 5 12 0 11 0 2 2 0
12 0 0 5 6 8 10 5 7 5 2 7
4 6 12 9 6 10 5 4 9 6 7 0
0 6 11 12 9 0 7 7 11 9 5 2

12 4 4 10 9 5 5 7 9 2 6 5



1



> matgen(997);



795 20 774 716 581 13 57 611 231 275 448 637
83 480 556 14 927 157 378 968 514 763 165 476

631 669 457 748 620 23 854 635 906 28 595 869
809 867 517 273 270 81 303 649 768 875 256 446
309 840 893 824 50 91 515 436 713 656 658 182
209 687 123 97 371 43 351 599 508 799 140 686
333 74 298 956 728 47 303 24 294 443 477 195
224 333 123 638 428 447 129 712 581 368 728 127
605 50 549 164 725 515 974 511 530 70 519 500
855 786 856 607 159 522 409 541 773 241 670 767
766 437 838 695 542 729 149 213 338 497 673 200
953 691 447 407 410 266 100 120 566 222 79 316


> m:=matgen(13);

m :=



6 0 0 1 1 0 2 1 6 3 9 0
6 0 4 7 12 2 7 2 2 11 8 6
2 2 8 7 8 9 3 9 3 3 9 10
1 0 12 8 0 0 8 7 7 1 10 4
6 5 12 2 4 7 0 8 0 8 0 12
6 6 5 2 3 5 1 10 0 2 3 1
4 2 3 3 12 12 1 5 6 0 1 12

12 3 5 7 12 3 6 3 5 2 7 10
8 5 2 1 11 7 2 6 5 9 5 8
5 4 0 6 12 1 9 3 12 7 11 0
0 3 4 6 4 6 7 9 9 0 0 10

12 11 9 7 10 8 4 9 2 0 2 5


> Det(m) mod 13;

0
> x:=matgen(5);
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x :=



3 4 2 0 0 4 0 3 1 0 0 3
4 0 1 2 2 2 1 3 0 3 1 3
3 3 0 1 4 0 0 2 2 2 2 3
4 0 0 3 1 2 0 1 1 2 3 3
2 4 0 3 1 1 0 1 1 2 2 3
1 4 3 0 4 4 4 3 4 2 3 0
3 0 4 3 4 3 4 0 0 3 1 2
4 1 4 2 4 1 0 2 2 3 0 1
1 1 4 1 4 0 2 2 0 4 2 1
0 4 0 0 1 3 2 4 3 3 0 4
2 2 1 1 4 3 1 4 2 0 2 1
3 2 0 2 3 2 3 3 4 1 0 0


> Det(x) mod 5;

1

3



Appendix B

/*
* Program: attack2
* Created: 2005-09-20 Alan Silvester
* ||
* Implements the attack
*/

#include <iostream>
#include <sstream>
#include <fstream>
#include <string>

#include <NTL/mat_ZZ_p.h>

#include "assert.h"
#include "timer.h"
#include <sys/time.h>

#include "functions.h"

#include "field_functions.h"

#include "AAG_System.h"

NTL_CLIENT

using namespace std;
using namespace NTL;

std::ostream & operator<<(std::ostream &os,
const GeneratorIndex &gi)

{
gi.print(os);

}

Blob AAGSpace::u_compute (const ValueMatrix& seed) const

{
Blob x (seed, PermutationVector (m_matrix_size, true));
size_t i;

for (i = 0; i < m_u.size (); ++i)

1



{

x = eraser (x, *(get_generator (m_u[i])));

}

return (x);

}

Blob AAGSpace::u_inv_compute (const ValueMatrix& seed,
const PermutationVector& p1) const

{
Blob x (seed, p1);

size_t i;

for (i = 0; i < m_u_inverse.size (); ++i)

{

x = eraser (x, *(get_generator (m_u_inverse[i])));

}

return (x);

}

int main (int argc, char * argv[])
{

////////////////////////////////////////////////////////////
//
// Opening output log file
//
////////////////////////////////////////////////////////////

ofstream output ("outputfile3.txt");
if (!output.is_open())
{

cout << "error opening outputfile3.txt\n";
return 1;
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}

// Seed RNG
// timeval tv;
// gettimeofday(&tv, NULL);
// srand(tv.tv_sec);

////////////////////////////////////////////////////////////
//
// Writing temp ini file
//
////////////////////////////////////////////////////////////

int kl = 100;

ofstream inioutput ("test5.ini");
if (!inioutput.is_open())
{

cout << "error opening test5.ini\n";
return 1;

}

// inioutput << "RandomSeed=" << tv.tv_sec << endl;
inioutput << "DisplaySharedSecret=no\n";

inioutput << "Iterations=10\n";

inioutput << "Prime=13\n";

inioutput << "VC=12\n";

inioutput << "T=1D,1 2 8 9 10 11 12 3 4 5 6 7\n";

inioutput << "KeyLength=" << kl << endl;

inioutput << "Partition=1D,1 2 3 4 5\n";
inioutput << "Partition=1D,7 8 9 10 11\n";

inioutput << "ULength=12\n";
inioutput << "U=1,12\n";
inioutput << "U=7,-12\n";
inioutput << "U=12,-12\n";
inioutput << "U=8,12\n";
inioutput << "U=9,-12\n";
inioutput << "U=11,12\n";
inioutput << "U=4,-12\n";
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inioutput << "U=5,-12\n";
inioutput << "U=6,12\n";
inioutput << "U=2,-12\n";
inioutput << "U=3,12\n";
inioutput << "U=10,-12\n";
inioutput << "U=1,-12\n";
inioutput << "U=7,12\n";
inioutput << "U=12,12\n";
inioutput << "U=8,-12\n";
inioutput << "U=9,12\n";
inioutput << "U=11,-12\n";
inioutput << "U=4,12\n";
inioutput << "U=5,12\n";
inioutput << "U=6,-12\n";
inioutput << "U=2,12\n";
inioutput << "U=3,-12\n";
inioutput << "U=10,12\n";

inioutput.close();

////////////////////////////////////////////////////////////
//
// Initialisation
//
////////////////////////////////////////////////////////////

// Setup the generator matricies
vector<pair<Generator, Generator> > g;
size_t matrix_size = 6;
timer t;
cout << "setting up generator matricies\n";

cout << "making new AAGSpace\n"; ;
AAGSpace space = AAGSpace("test5.ini");

cout << "have " << space.m_partitions.size()
<< " partitions\n"; ;

cout << "m_partition[0] data: ";
for (int i = 0; i < space.m_partitions[0].size(); i++)

cout << space.m_partitions[0][i] << " ";
cout << endl; ;

cout << "m_partition[1] data: ";
for (int i = 0; i < space.m_partitions[1].size(); i++)

cout << space.m_partitions[1][i] << " ";
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cout << endl; ;

ValueMatrix vm_seed_matrix = ValueMatrix(matrix_size*2,
true);

////////////////////////////////////////////////////////////
//
// Start timer for alice key-gen
//
////////////////////////////////////////////////////////////

t.start();

////////////////////////////////////////////////////////////
//
// Generate Alice’s keypair
//
////////////////////////////////////////////////////////////

cout << "generating alice’s keypair\n";

// This skips the exponentiation of the seed matrix
Keypair alice_key = space.make_keypair(0, 0);

cout << "keygen time: " << t << endl;
Blob alice_key_blob = alice_key.build_public();
alice_key.print("Keypair::print - alice’s keypair", cout);

////////////////////////////////////////////////////////////
//
// Start timer for bob key-gen
//
////////////////////////////////////////////////////////////

t.restart();

////////////////////////////////////////////////////////////
//
// Generate Bob’s keypair
//
////////////////////////////////////////////////////////////

cout << "generating bob’s keypair\n";

// This skips the exponentiation of the seed matrix
Keypair bob_key = space.make_keypair(1, 0);
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cout << "keygen time: " << t << endl;
Blob bob_key_blob = bob_key.build_public();
bob_key.print("Keypair::print - bob’s keypair", cout);

////////////////////////////////////////////////////////////
//
// Start timer for key exchange
//
////////////////////////////////////////////////////////////

t.restart();

////////////////////////////////////////////////////////////
//
// Shared secret
//
////////////////////////////////////////////////////////////

Blob shared_secret = space.key_exchange(bob_key_blob,
alice_key.PrivateKey(),
vm_seed_matrix);

cout << "secret gen time: " << t << endl;
shared_secret.print("shared secret (alice)", cout);

space.m_t.print("t = ");

cout << "Key exchange time: " << t << endl;

////////////////////////////////////////////////////////////
//
// Start timer for crack
//
////////////////////////////////////////////////////////////

t.restart();

////////////////////////////////////////////////////////////
//
// Make identity matrix
//
////////////////////////////////////////////////////////////

ValueMatrix vm = ValueMatrix(matrix_size*2, true);

////////////////////////////////////////////////////////////
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//
// Calculate pi(u)
//
////////////////////////////////////////////////////////////

cout << "Computing pi(u)\n";
Blob pi_u = space.u_compute(vm);
pi_u.print("pi(u), u.p", cout);

////////////////////////////////////////////////////////////
//
// Calculate P1 (alice)
//
////////////////////////////////////////////////////////////

// Dummy data
PermutationVector alice_p1 = alice_key_blob.m_permutation;

alice_key_blob.m_permutation.Permute(pi_u.m_permutation,
alice_p1);

cout << "\nP1 (alice)\n";
alice_p1.print(cout);
cout << endl;

////////////////////////////////////////////////////////////
//
// Calculate P1 (bob)
//
////////////////////////////////////////////////////////////

// Dummy data
PermutationVector bob_p1 = bob_key_blob.m_permutation;
bob_key_blob.m_permutation.Permute(pi_u.m_permutation,

bob_p1);

cout << "\nP1 (bob)\n";
bob_p1.print(cout);
cout << endl;

////////////////////////////////////////////////////////////
//
// Calculate pi(u inv) (alice)
//
////////////////////////////////////////////////////////////
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cout << "Computing pi(u inv to sig u sig a)\n";
Blob alice_pi_u_inv = space.u_inv_compute(vm, alice_p1);
alice_pi_u_inv.print("pi(u_inv_to_sig_u_sig_a), alice_p1",

cout);

////////////////////////////////////////////////////////////
//
// Calculate pi(u inv) (bob)
//
////////////////////////////////////////////////////////////

cout << "Computing pi(u inv to sig u sig b)\n";
Blob bob_pi_u_inv = space.u_inv_compute(vm, bob_p1);
bob_pi_u_inv.print("pi(u_inv_to_sig_u_sig_b), bob_p1",

cout);

////////////////////////////////////////////////////////////
//
// Calculate pi(u inv)
//
////////////////////////////////////////////////////////////

cout << "Computing pi(u inv)\n";
Blob pi_u_inv = space.u_inv_compute(vm,

PermutationVector(matrix_size*2, true));
pi_u_inv.print("pi(u inv), sig_u_inv", cout);

////////////////////////////////////////////////////////////
//
// Calculate P2 (alice)
//
////////////////////////////////////////////////////////////

// Dummy data
PermutationVector alice_p2 = alice_key_blob.m_permutation;

pi_u_inv.m_permutation.Permute(alice_p1, alice_p2);

cout << "\nP2 (alice)\n";
alice_p2.print(cout);
cout << endl;

////////////////////////////////////////////////////////////
//
// Calculate P2 (bob)
//
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////////////////////////////////////////////////////////////

// Dummy data
PermutationVector bob_p2 = bob_key_blob.m_permutation;

pi_u_inv.m_permutation.Permute(bob_p1, bob_p2);

cout << "\nP2 (bob)\n";
bob_p2.print(cout);
cout << endl;

////////////////////////////////////////////////////////////
//
// Compute pi(u)^(-1)
//
////////////////////////////////////////////////////////////

// Init ZZ_p class
ZZ p;
p = (long) 13;
ZZ_p::init(p);

// Determinant holder (don’t really need)
ZZ_p d1;

// Our matrix and matrix holder
mat_ZZ_p m1;
mat_ZZ_p X;
m1.SetDims(matrix_size*2, matrix_size*2);
X.SetDims(matrix_size*2, matrix_size*2);

// Fill matrix with data
for (int i = 0; i < matrix_size*2; i++)

for (int j = 0; j < matrix_size*2; j++)
m1[i][j] = pi_u.m_matrix.cell(i,j);

// Calculate inverse
NTL::inv(d1, X, m1);

// Copy data back out
ValueMatrix inverse_pi_u (matrix_size*2, false);

for (int i = 0; i < matrix_size*2; i++)
for (int j = 0; j < matrix_size*2; j++)

for (int k = 0; k < rep(X[i][j]).size(); k++)
inverse_pi_u.cell(i, j, inverse_pi_u.cell(i,j)
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+ digit(rep(X[i][j]), k));

cout << "inv of pi(u)\n";
inverse_pi_u.print(cout);

////////////////////////////////////////////////////////////
//
// Compute pi(u^p1)^(-1) (alice)
//
////////////////////////////////////////////////////////////

Blob alice_m2_blob = space.make_m2(vm, alice_p1,
matrix_size);

// Determinant holder (don’t really need)
ZZ_p alice_d2;

// Our matrix and matrix holder
mat_ZZ_p alice_m2;
mat_ZZ_p alice_Y;
alice_m2.SetDims(matrix_size*2, matrix_size*2);
alice_Y.SetDims(matrix_size*2, matrix_size*2);

// Fill matrix with data
for (int i = 0; i < matrix_size*2; i++)

for (int j = 0; j < matrix_size*2; j++)
alice_m2[i][j] = alice_m2_blob.m_matrix.cell(i,j);

// Calculate inverse
NTL::inv(alice_d2, alice_Y, alice_m2);

// Copy data back out
ValueMatrix alice_m2_inverse (matrix_size*2, false);

for (int i = 0; i < matrix_size*2; i++)
for (int j = 0; j < matrix_size*2; j++)

for (int k = 0; k < rep(alice_Y[i][j]).size(); k++)
alice_m2_inverse.cell(i, j,

alice_m2_inverse.cell(i,j)
+ digit(rep(alice_Y[i][j]), k));

cout << "inv of pi(u_inv_to_sig_u_sig_a)\n";
alice_m2_inverse.print(cout);

////////////////////////////////////////////////////////////
//
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// Compute pi(u^p1)^(-1) (bob)
//
////////////////////////////////////////////////////////////

Blob bob_m2_blob = space.make_m2(vm, bob_p1, matrix_size);

// Determinant holder (don’t really need)
ZZ_p bob_d2;

// Our matrix and matrix holder
mat_ZZ_p bob_m2;
mat_ZZ_p bob_Y;
bob_m2.SetDims(matrix_size*2, matrix_size*2);
bob_Y.SetDims(matrix_size*2, matrix_size*2);

// Fill matrix with data
for (int i = 0; i < matrix_size*2; i++)

for (int j = 0; j < matrix_size*2; j++)
bob_m2[i][j] = bob_m2_blob.m_matrix.cell(i,j);

// Calculate inverse
NTL::inv(bob_d2, bob_Y, bob_m2);

// Copy data back out
ValueMatrix bob_m2_inverse (matrix_size*2, false);

for (int i = 0; i < matrix_size*2; i++)
for (int j = 0; j < matrix_size*2; j++)

for (int k = 0; k < rep(bob_Y[i][j]).size(); k++)
bob_m2_inverse.cell(i, j, bob_m2_inverse.cell(i,j)

+ digit(rep(bob_Y[i][j]), k));

cout << "inv of pi(u_inv_to_sig_u_sig_b)\n";
bob_m2_inverse.print(cout);

////////////////////////////////////////////////////////////
//
// Recover key
//
////////////////////////////////////////////////////////////

ValueMatrix alice_temp = (inverse_pi_u
* alice_key_blob.m_matrix)
* alice_m2_inverse;

cout << "\nShould be upper-block (alice)\n";
alice_temp.print(cout);
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ValueMatrix bob_temp = (inverse_pi_u
* bob_key_blob.m_matrix)
* bob_m2_inverse;

cout << "\nShould be lower-block (bob)\n";
bob_temp.print(cout);

// Compose sigma_a, sigma_b

// Dummy data
PermutationVector result1 = alice_p1;
PermutationVector result2 = alice_p1;

alice_p1.Permute(bob_p2, result1);
result1.Permute(pi_u_inv.m_permutation, result2);

cout << "\nalice_p1\n";
alice_p1.print(cout);
cout << "\nalice_p2\n";
alice_p2.print(cout);
cout << "\nbob_p1\n";
bob_p1.print(cout);
cout << "\nbob_p2\n";
bob_p2.print(cout);
cout << "\nresult 1\n";
result1.print(cout);
cout << "\nresult 2\n";
result2.print(cout);

Blob rhs = space.u_inv_compute(vm, result1);

ValueMatrix found_secret = pi_u.m_matrix * alice_temp
* bob_temp * rhs.m_matrix;

cout << "\n\nsecret is\n";
found_secret.print(cout);
result2.print(cout);

////////////////////////////////////////////////////////////
//
// Stop timer and print
//
////////////////////////////////////////////////////////////

t.stop();
cout << "\n\nRun-time: " << t << endl;
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////////////////////////////////////////////////////////////
//
// Cleanup and exit
//
////////////////////////////////////////////////////////////

return 0;
}
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